Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Rev. int. med. cienc. act. fis. deporte ; 23(92): 313-322, aug.-sept. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-229406

RESUMO

Objective: This study aims to explore the correlation between interleukin-6 (IL-6) levels and the condition of patients with psittacosis pneumonia, and extend these insights to the context of respiratory health in athletes.Methods: In a retrospective analysis, we included 14 patients diagnosed with psittacosis pneumonia (parrot fever) treated in our hospital from April 2018 to September 2021 as the study group (SG). As a control group (CG), we selected 20 patients with common pneumonia treated during the same period. We compared IL-6 levels between these groups and recorded changes in IL-6 levels in the SG before and after treatment. Additionally, we analyzed the correlation of IL-6 levels with procalcitonin (PCT) and C-reactive protein (CRP) levels.Results:The IL-2 levels in the SG were significantly lower than those in the CG, while IL-6 levels were significantly higher. No significant difference was observed in IL-10 and IL-6 levels between the groups (P>0.05). The average IL-6 level in the SG was 80.78±46.20 ng/L before treatment and 7.86±6.73 ng/L after treatment, showing a significant reduction (P<0.05). There was a significant positive correlation between IL-6 levels and PCT levels in the SG (r=0.2659, P<0.05), but the correlation with CRP levels was not significant (r=0.0033, P=0.8465). The Area Under Curve (AUC) of IL-6 for diagnosing psittacosis pneumonia was 0.7929 (P=0.0041). Conclusion: Patients with psittacosis pneumonia exhibit distinct interleukin level changes, particularly in IL-2 and IL-6, compared to those with ordinary pneumonia. The correlation of IL-6 with PCT levels suggests its potential as a marker in assessing respiratory health conditions, which could be relevant for monitoring respiratory health in athletes, given the heightened susceptibility to respiratory issues in this group (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , /sangue , Psitacose/diagnóstico , Psitacose/imunologia , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/imunologia , Estudos Retrospectivos , Biomarcadores/sangue
2.
Front Immunol ; 12: 645653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093535

RESUMO

Chlamydia psittaci (C. psittaci) is a common zoonotic agent that affects both poultry and humans. Interleukin 10 (IL-10) is an anti-inflammatory factor produced during chlamydial infection, while dendritic cells (DCs) are powerful antigen-presenting cells that induce a primary immune response in the host. However, IL-10 and DCs regulatory mechanisms in C. psittaci infection remain elusive. In vivo and in vitro investigations of the regulatory mechanisms were performed. IL-10-/- mice, conditional DCs depletion mice (zinc finger dendritic cell-diphtheria toxin receptor [zDC-DTR]), and double-deficient mice (DD, IL-10-/-/zDCDTR/DTR) were intranasally infected with C. psittaci. The results showed that more than 90% of IL-10-/- mice, 70% of wild-type mice, and 60% of double-deficient mice survived, whereas all zDC-DTR mice died. A higher lymphocyte proliferation index was found in the IL-10 inhibitor mice and IL-10-/- mice. Moreover, severe lesions and high bacterial loads were detected in the zDC-DTR mice compared with double-deficient mice. In vitro studies revealed increased OX40-OX40 ligand (OX40-OX40L) activation and CD4+T cell proliferation. Besides, the expression of indoleamine 2, 3-dioxygenase (IDO), and regulatory T cells were significantly reduced in the co-culture system of CD4+ T cells and IL-10-/- DCs in C. psittaci infection. Additionally, the activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome increased to facilitate the apoptosis of DCs, leading to rapid clearance of C. psittaci. Our study showed that IL-10-/- upregulated the function of deficient DCs by activating OX40-OX40L, T cells, and the NLPR3 inflammasome, and inhibiting IDO, and regulatory T cells. These effects enhanced the survival rate of mice and C. psittaci clearance. Our research highlights the mechanism of IL-10 interaction with DCs, OX40-OX40L, and the NLPR3 inflammasome, as potential targets against C. psittaci infection.


Assuntos
Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Interleucina-10/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Ligante OX40/fisiologia , Psitacose/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Pulmão/microbiologia , Pulmão/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Psitacose/mortalidade , Transdução de Sinais/fisiologia
3.
Vet Microbiol ; 255: 108960, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667981

RESUMO

Chlamydia psittaci is an obligate intracellular zoonotic pathogen that can enter a persistence state in host cells. While the exact pathogenesis is not well understood, this persistence state may play an important role in chronic Chlamydia disease. Here, we assess the effects of chlamydial persistence state in vitro and in vivo by transmission electron microscopy (TEM) and cDNA microarray assays. First, IFN-γ-induced C. psittaci persistence in HeLa cells resulted in the upregulation of 68 genes. These genes are involved in protein translation, carbohydrate metabolism, nucleotide metabolism, lipid metabolism and general stress. However, 109 genes were downregulated following persistent C. psittaci infection, many of which are involved in the TCA cycle, expression regulation and transcription, protein secretion, proteolysis and transport, membrane protein, presumed virulence factor, cell division and late expression. To further study differential gene expression of C. psittaci persistence in vivo, we established an experimentally tractable mouse model of C. psittaci persistence. The C. psittaci-infected mice were gavaged with either water or amoxicillin (amox), and the results indicated that the 20 mg/kg amox-exposed C. psittaci were viable but not infectious. Differentially expressed genes (DEGs) screened by cDNA microarray were detected, and interestingly, the results showed upregulation of three genes (euo, ahpC, prmC) and downregulation of five genes (pbp3, sucB_1, oppA_4, pmpH, ligA) in 20 mg/kg amox-exposed C. psittaci, which suggests that antibiotic treatment in vivo can induce chlamydial persistence state and lead to differential gene expression. However, the discrepancy on inducers between the two models requires more research to supplement. The results may help researchers better understand survival advantages during persistent infection and mechanisms influencing C. psittaci pathogenesis or evasion of the adaptive immune response.


Assuntos
Chlamydophila psittaci/fisiologia , Psitacose/metabolismo , Amoxicilina/administração & dosagem , Amoxicilina/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Feminino , Regulação da Expressão Gênica/fisiologia , Vida Livre de Germes , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Psitacose/tratamento farmacológico , Psitacose/imunologia , Psitacose/microbiologia , Transcriptoma , Regulação para Cima
4.
Int J Mol Sci ; 21(6)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183481

RESUMO

The polymorphic membrane protein D (PmpD) is a highly conserved outer membrane protein which plays an important role in pathogenesis during Chlamydia psittaci infection. In this study, we evaluated the ability of the N-terminus of PmpD (PmpD-N) to modulate the functions of chicken macrophages and the signaling pathway(s) involved in PmpD-N-induced Toll-like receptors (TLRs), as well as interleukin (IL)-6 and IL-10 cytokine secretions. Thus, HD11 macrophages were treated with exogenous and intracellular PmpD-N of C. psittaci. The chlamydial growth was evaluated by enumeration of chlamydial loads in the infected macrophages. The phagocytic function of macrophages following PmpD-N treatment was detected by fluorescein-labeled Escherichia coli (E. coli). The concentration of nitric oxide (NO) secreted by HD11 macrophages was measured by the amount of NO2- in the culture supernatant using the Griess method. The cytokine secretions were assessed using multiplex cytokine ELISA kits. Expression levels of TLRs, myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B (NF-κB) were analyzed by a Western blotting assay, as well as a luciferase assay, while NF-κB p65 nuclear translocation was assessed by confocal microscopy. The nuclear translocation of the transcription factor NF-κB was confirmed by evaluating its ability to combine with the corresponding promoter using the electrophoretic mobility shift assay (EMSA). After treatment with exogenous or endogenous PmpD-N, chlamydial loads and phagocytic functions were reduced significantly compared with those of the plasmid vector group, while NO secretions were reduced significantly compared with those of the lipopolysaccharide (LPS) treatment. Stimulation of HD11 cells with PmpD-N provoked the secretion of the Th2 cytokines, IL-6, and IL-10 and upregulated the expression of TLR2, TLR4, MyD88, and NF-κB. Furthermore, inhibition of TLR2, MyD88, and NF-κB in HD11 cells significantly decreased IL-6 and IL-10 cytokine levels, while NO production and phagocytosis increased significantly, strongly suggesting their involvement in PmpD-N-induced Th2 cytokine secretion and macrophage dysfunction. Our data indicate that C. psittaci PmpD-N inhibited macrophage functions by activating the Th2 immune response and the TLR2/MyD88/NF-κB signaling pathway.


Assuntos
Proteínas Aviárias/imunologia , Proteínas de Bactérias/imunologia , Chlamydophila psittaci/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Linhagem Celular , Galinhas , Macrófagos/microbiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Psitacose/imunologia , Psitacose/microbiologia , Psitacose/veterinária
5.
Artigo em Inglês | MEDLINE | ID: mdl-31838983

RESUMO

Introduction: This report describes the challenges encountered in using serological methods to study the historical transmission risk of C. psittaci from horses to humans. Methods: In 2017, serology and risk factor questionnaire data from a group of individuals, whose occupations involved close contact with horses, were collected to assess the seroprevalence of antibodies to C. psittaci and identify risk factors associated with previous exposure. Results: 147 participants were enrolled in the study, provided blood samples, and completed a questionnaire. On ELISA testing, antibodies to the Chlamydia genus were detected in samples from 17 participants but further specific species-specific MIF testing did not detect C. psittaci-specific antibodies in any of these samples. Conclusion: No serological evidence of past C. psittaci transmission from horses to humans was found in this study cohort. There are major challenges in using serological methods to determine the prevalence of C. psittaci exposure.


Assuntos
Anticorpos Antibacterianos/sangue , Chlamydophila psittaci/isolamento & purificação , Cavalos/microbiologia , Exposição Ocupacional , Psitacose/imunologia , Zoonoses , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Testes Sorológicos/métodos , Adulto Jovem
6.
Immunobiology ; 224(6): 739-746, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31561842

RESUMO

Chlamydia psittaciis a well known zoonotic pathogen that can lead to severe respiratory disease in poultry, pet birds and humans. Development of an effective and safe vaccine would be the most effective way to control C. psittaci infection. In this study, we used bacterial ghosts (BGs) as a delivery vehicle to evaluate the protective effects of major outer membrane protein (MOMP) and macrophage infectivity potentiator (MIP) DNA vaccines in mice. We found that MOMP/MIP DNA-loaded BGs elicited a better immune response than a naked DNA vaccine, giving increased IgG titers, lymphocyte proliferation responses and higher levels of IFN-γ. After challenge infection, MOMP/MIP DNA-loaded BGs-immunized mice showed lower chlamydial load and inflammation pathology in lung tissues. In addition, we found that MOMP and MIP co-immunization or a heterologous prime-boost strategy could induce stronger immune responses and better protective efficacy against C. psittaci infection. Together, the above results suggest that BGs can act as an effective delivery vehicle for C. psittaci DNA vaccines, and co-immunization or heterologous prime-boost strategy can enhance protective efficacy against infection, thereby providing an alternative strategy for the design of vaccines against C. psittaci.


Assuntos
Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Chlamydophila psittaci/genética , Psitacose/terapia , Infecções Respiratórias/terapia , Vacinas de DNA/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/imunologia , Chlamydophila psittaci/imunologia , Citocinas/imunologia , DNA Bacteriano/administração & dosagem , Escherichia coli/genética , Feminino , Células HeLa , Humanos , Imunoglobulina G/sangue , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos , Psitacose/genética , Psitacose/imunologia , Psitacose/patologia , Células RAW 264.7 , Proteínas Recombinantes/imunologia , Infecções Respiratórias/genética , Infecções Respiratórias/imunologia , Infecções Respiratórias/patologia , Baço/citologia , Baço/imunologia
7.
Sci Rep ; 9(1): 4799, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886314

RESUMO

Natural killer (NK) cells are innate immune cells critically involved in the early immune response against various pathogens including chlamydia. Here, we demonstrate that chlamydia-infected NK cells prevent the intracellular establishment and growth of the bacteria. Upon infection, they display functional maturation characterized by enhanced IFN-γ secretion, CD146 induction, PKCϴ activation, and granule secretion. Eventually, chlamydia are released in a non-infectious, highly immunogenic form driving a potent Th1 immune response. Further, anti-chlamydial antibodies generated during immunization neutralize the infection of epithelial cells. The release of chlamydia from NK cells requires PKCϴ function and active degranulation, while granule-associated granzyme B drives the loss of chlamydial infectivity. Cellular infection and bacterial release can be undergone repeatedly and do not affect NK cell function. Strikingly, NK cells passing through such an infection cycle significantly improve their cytotoxicity. Thus, NK cells not only protect themselves against productive chlamydial infections but also actively trigger potent anti-bacterial responses.


Assuntos
Chlamydophila psittaci/imunologia , Imunidade Celular , Células Matadoras Naturais/imunologia , Psitacose/imunologia , Células Th1/imunologia , Animais , Antígeno CD146/metabolismo , Comunicação Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Camundongos , Cultura Primária de Células , Proteína Quinase C-theta/metabolismo , Psitacose/sangue , Psitacose/microbiologia , Baço/citologia
8.
Immunol Res ; 66(4): 471-479, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30097797

RESUMO

The present study evaluated the immune-protective efficacy of the Chlamydia psittaci (C. psittaci) plasmid protein CPSIT_p7 and analyzed the potential mechanisms of this protection. The current study used recombinant CPSIT_p7 protein with Freund's complete adjuvant and Freund's incomplete adjuvant to vaccinate BALB/c mice. Adjuvants alone or PBS formulated with the same adjuvants was used as negative controls. Mice were intranasally challenged with 105 inclusion-forming units (IFU) of C. psittaci. We found that CPSIT_p7 vaccination significantly decreased the mouse lung chlamydial load, interferon-γ (IFN-γ) level, and pathological injury. This protection correlated well with specific humoral and cellular immune responses against C. psittaci. In vitro or in vivo neutralization of C. psittaci with sera harvested from immunized mice did not reduce the number of recoverable C. psittaci in the infected lungs, but CD4+ spleen cells collected from CPSIT_p7-immunized mice significantly decreased the chlamydial load via adoptive transfer to native mice. These results reveal that the protection conferred by CPSIT_p7 is dependent on CD4+ T cells.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Chlamydophila psittaci/fisiologia , Pulmão/patologia , Psitacose/imunologia , Vacinas Sintéticas/imunologia , Animais , Antígenos de Bactérias/genética , Carga Bacteriana , Feminino , Imunidade Celular , Imunização , Interferon gama/sangue , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Vacinação
9.
Pathog Dis ; 75(3)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204474

RESUMO

Chlamydia psittaci is an obligate intracellular bacteria that causes respiratory disease in poultry and humans. Currently, there are no licensed vaccines against chlamydial infection in humans. The transmembrane head protein CPSIT_0846 of C. psittaci is a putative member of the larger Inc protein family. In this study, we investigated immunogenicity and protective efficacy of the recombinant CPSIT_0846 protein in BALB/c mice. Mice immunized with CPSIT_0846 developed strong T-lymphocyte responses that were recalled by the immunogen CPSIT_0846 in an in vitro restimulation assay. These T cells displayed a strong Th1-biased cytokine profile with high levels of IFN-γ. At the same time, a strong humoral immune response was also detected in the immunized mice with high titers of Chlamydia psittaci-specific serum IgG antibodies. More importantly, the robust immune responses correlated well with significantly reduced chlamydial burden and inflammatory pathology in the mouse lungs upon an airway challenge infection. The above results together suggest that the CPSIT_0846 protein may be a potential vaccine candidate antigen for inducing protection against C. psittaci infection and disease in the airway.


Assuntos
Proteínas de Bactérias/imunologia , Chlamydophila psittaci/imunologia , Psitacose/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células HeLa , Humanos , Imunização , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Psitacose/metabolismo , Psitacose/microbiologia , Psitacose/prevenção & controle , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Células Th1/imunologia , Células Th1/metabolismo
10.
FEBS Lett ; 590(21): 3920-3940, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27397851

RESUMO

Chlamydia psittaci causes psittacosis/ornithosis in birds and is an economically important pathogen for poultry farming. It also infects nonavian domestic animals as well as rodents, and is a zoonotic human pathogen responsible for atypical pneumonia. The bacterium efficiently disseminates in host organisms causing pulmonary and systemic disease. Its rapid entry, fast replication cycle, and tight control of intracellular transport routes contribute to the host-to-host transmission and efficient growth observed with C. psittaci. Recent studies have revealed that the pathogen copes better than other chlamydial strains with proinflammatory effectors produced during the early immune reaction of infected hosts. These features likely contribute to successful infections and might explain the potent adaptation and evasion characteristics of the agent. Current findings on cell-autonomous, innate, and adaptive defenses against C. psittaci provide novel insights into the concerted immune mechanisms involved in the clearance of the pathogen. Further in-depth studies on C. psittaci and other related agents in cellular as well as animal models are needed to develop more efficient antichlamydial therapies and vaccination strategies.


Assuntos
Chlamydophila psittaci/fisiologia , Chlamydophila psittaci/patogenicidade , Psitacose/transmissão , Adaptação Fisiológica , Animais , Chlamydophila psittaci/genética , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Psitacose/imunologia , Psitacose/veterinária
11.
Vet Immunol Immunopathol ; 170: 54-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26848049

RESUMO

It has since long been reported that Chlamydia psittaci is endemic in the poultry industry in Belgium as well as in other European Countries. This can lead to major economic losses because of a lowered egg production, higher mortality and carcass condemnation. Nowadays, expensive antibiotic treatments are necessary to reduce mortality rate but this can lead to antibiotic resistance. Moreover, C. psittaci can easily be transmitted from birds to humans through the inhalation of pathogen-containing aerosols derived from feces and eye and nostril secretions. Therefore, the need for an efficient vaccine against C. psittaci is augmenting. However, more research is needed to develop such a vaccine. Knowledge on the immune mechanisms of C. psittaci infections is crucial to understand the pathogenesis of, and immunity to this zoonotic pathogen and to act as a basis for vaccination studies. This study has investigated the in vivo immune response evoked by C. psittaci in his natural host, the chicken. Excretion of C. psittaci, chlamydial antibody detection in sera, blood immune cells and the mRNA expression levels of different cytokines, chemokines and one Toll-like receptor were investigated in different organs (conchae, lungs, airsacs, harderian gland, bursa fabricius and spleen) at different time points post infection (6 h, 24 h, 48 h, 4 d, 6d, 8 d, 10 d, 14 d and 21 d). A higher frequency of cytotoxic CD8(+) T cells and monocytes/macrophages expressing the MHC II molecule were observed in the infected group. Several cytokines and chemokines are significantly upregulated during infection but remarkably also significantly downregulated, especially at late time points. Furthermore, the only Toll-like receptor investigated, TLR4, was also significant upregulated in several organs. This study can contribute on the elucidation on how C. psittaci interact with his host, leading to the developing of targets for effective vaccination and therapeutic strategies for infection.


Assuntos
Galinhas/imunologia , Chlamydophila psittaci/imunologia , Psitacose/veterinária , Animais , Cloaca/microbiologia , Faringe/microbiologia , Psitacose/genética , Psitacose/imunologia
12.
Vet Immunol Immunopathol ; 164(1-2): 30-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25638671

RESUMO

Although Chlamydia (C.) psittaci infections are recognized as an important factor causing economic losses and impairing animal welfare in poultry production, the specific mechanisms leading to severe clinical outcomes are poorly understood. In the present study, we comparatively investigated pathology and host immune response, as well as systemic dissemination and expression of essential chlamydial genes in the course of experimental aerogeneous infection with C. psittaci and the closely related C. abortus, respectively, in specific pathogen-free chicks. Clinical signs appeared sooner and were more severe in the C. psittaci-infected group. Compared to C. abortus infection, more intense systemic dissemination of C. psittaci correlated with higher and faster infiltration of immune cells, as well as more macroscopic lesions and epithelial pathology, such as hyperplasia and erosion. In thoracic air sac tissue, mRNA expression of immunologically relevant factors, such as IFN-γ, IL-1ß, IL-6, IL-17, IL-22, LITAF and iNOS was significantly stronger up-regulated in C. psittaci- than in C. abortus-infected birds between 3 and 14 days post-infection. Likewise, transcription rates of the chlamydial genes groEL, cpaf and ftsW were consistently higher in C. psittaci during the acute phase. These findings illustrate that the stronger replication of C. psittaci in its natural host also evoked a more intense immune response than in the case of C. abortus infection.


Assuntos
Galinhas/imunologia , Galinhas/microbiologia , Infecções por Chlamydia/veterinária , Doenças das Aves Domésticas/imunologia , Psitacose/veterinária , Animais , Animais Recém-Nascidos , Chlamydia/genética , Chlamydia/imunologia , Chlamydia/patogenicidade , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/patologia , Chlamydophila psittaci/genética , Chlamydophila psittaci/imunologia , Chlamydophila psittaci/patogenicidade , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária , Doenças das Aves Domésticas/patologia , Psitacose/imunologia , Psitacose/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Sistema Respiratório/patologia , Organismos Livres de Patógenos Específicos
13.
Int J Med Microbiol ; 304(7): 877-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082204

RESUMO

The distinctive and unique features of the avian and mammalian zoonotic pathogen Chlamydia (C.) psittaci include the fulminant course of clinical disease, the remarkably wide host range and the high proportion of latent infections that are not leading to overt disease. Current knowledge on associated diseases is rather poor, even in comparison to other chlamydial agents. In the present paper, we explain and summarize the major findings of a national research network that focused on the elucidation of host-pathogen interactions in vitro and in animal models of C. psittaci infection, with the objective of improving our understanding of genomics, pathology, pathophysiology, molecular pathogenesis and immunology, and conceiving new approaches to therapy. We discuss new findings on comparative genome analysis, the complexity of pathophysiological interactions and systemic consequences, local immune response, the role of the complement system and antigen presentation pathways in the general context of state-of-the-art knowledge on chlamydial infections in humans and animals and single out relevant research topics to fill remaining knowledge gaps on this important yet somewhat neglected pathogen.


Assuntos
Chlamydophila psittaci/genética , Chlamydophila psittaci/imunologia , Interações Hospedeiro-Patógeno , Patologia Clínica , Psitacose/imunologia , Psitacose/patologia , Animais , Chlamydophila psittaci/patogenicidade , Modelos Animais de Doenças , Genômica , Humanos , Psitacose/microbiologia
14.
PLoS One ; 8(5): e64066, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691148

RESUMO

Chlamydia (C.) psittaci is the causative agent of psittacosis, a zoonotic disease in birds and man. In addition, C. psittaci has been repeatedly found in domestic animals and is, at least in calves, also able to induce respiratory disease. Knowledge about transmission routes in cattle herds is still deficient, and nothing is known about differences in host response after either experimental or natural exposure to C. psittaci. Therefore, our recently developed respiratory infection model was exploited to evaluate (i) the presence of the pathogen in blood, excretions and air, (ii) the possibility of transmission and (iii) clinical symptoms, acute phase and immune response until 5 weeks after exposure. In this prospective study, intrabronchial inoculation of 10(8) inclusion-forming units of C. psittaci (n = 21 calves) led to reproducible acute respiratory illness (of approximately one week), accompanied by a systemic inflammatory reaction with an innate immune response dominated by neutrophils. Excretion and/or exhalation of the pathogen was sufficient to transmit the infection to naïve sentinel calves (n = 3) co-housed with the infected animals. Sentinel calves developed mild to subclinical infections only. Notably, excretion of the pathogen, predominantly via feces, occurred more frequently in animals naturally exposed to C. psittaci (i.e. sentinels) as compared to experimentally-inoculated calves. The humoral immune response was generally weak, and did not emerge regularly following experimental infection; however, it was largely absent after naturally acquired infection.


Assuntos
Doenças dos Bovinos/transmissão , Chlamydophila psittaci/isolamento & purificação , Chlamydophila psittaci/fisiologia , Psitacose/transmissão , Reação de Fase Aguda/complicações , Animais , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/imunologia , Feminino , Imunidade Celular , Imunidade Humoral , Leucócitos/imunologia , Pulmão/microbiologia , Masculino , Psitacose/sangue , Psitacose/complicações , Psitacose/imunologia
15.
J Immunol ; 190(6): 2791-806, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23418629

RESUMO

Dendritic cells (DCs) are among the first professional APCs encountered by the obligate intracellular bacterium Chlamydia during infection. Using an established mouse bone marrow-derived DC line, we show that DCs control chlamydial infection in multiple small inclusions characterized by restricted bacterial growth, impaired cytosolic export of the virulence factor chlamydial protease-like activity factor, and interaction with guanylate-binding protein 1, a host cell factor involved in the initiation of autophagy. During maturation of infected DCs, chlamydial inclusions disintegrate, likely because they lack chlamydial protease-like activity factor-mediated protection. Released cytosolic Chlamydia are taken up by autophagosomes and colocalize with cathepsin-positive amphisomal vacuoles, to which peptide transporter TAP and upregulated MHC class I (MHC I) are recruited. Chlamydial Ags are subsequently generated through routes involving preprocessing in amphisomes via cathepsins and entry into the cytosol for further processing by the proteasome. Finally, bacterial peptides are reimported into the endosomal pathway for loading onto recycling MHC I. Thus, we unravel a novel pathway of MHC I-mediated cross-presentation that is initiated with a host cellular attack physically disrupting the parasitophorous vacuole, involves autophagy to collect cytosolic organisms into autophagosomes, and concludes with complex multistep antigenic processing in separate cellular compartments.


Assuntos
Chlamydophila psittaci/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Autofagia/imunologia , Broncopneumonia/imunologia , Broncopneumonia/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Chlamydophila psittaci/metabolismo , Chlorocebus aethiops , Células Dendríticas/patologia , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Psitacose/imunologia , Psitacose/patologia
16.
Vaccine ; 31(4): 698-703, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23196208

RESUMO

Avian chlamydiosis is caused by Chlamydophila psittaci (Cp. psittaci) and major outer membrane protein (MOMP) of Cp. psittaci is an excellent vaccine candidate. In this study, the MOMP gene was expressed in rice callus by the Agrobacterium tumefaciens vector. The production of protein in transgenic rice seeds was confirmed and quantified by Western-blot and ELISA, the results demonstrating that the antigen was expressed stably. The transgenic rice seeds expressing the MOMP protein were administered by the oral route to BALB/c mice, which developed MOMP-specific serum IgG and fecal IgA antibodies and a splenocyte MOMP-specific proliferative response and significant levels of IFN-γ, IL-2, IL-4, IL-5 and TGF-ß production. Immunization with MOMP transgenic seeds induced partial protection (50%) against a lethal challenge with the highly virulent Cp. psittaci 6BC strain. Lung function after challenge was less affected compared non-MOMP immunized animals. The results demonstrate the feasibility of using transgenic rice seeds as an oral vaccine to generate protective immunity and reduce the lung lesions in mice against virulent Cp. psittaci 6BC strain. This finding has implications for further development of an oral vaccine against avian chlamydiosis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/imunologia , Chlamydophila psittaci/imunologia , Oryza/genética , Plantas Geneticamente Modificadas/genética , Psitacose/imunologia , Vacinas de Plantas Comestíveis/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/genética , Chlamydophila psittaci/genética , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Oryza/metabolismo , Psitacose/prevenção & controle , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de Plantas Comestíveis/genética
17.
PLoS One ; 7(11): e50327, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189195

RESUMO

The complement system modulates the intensity of innate and specific immunity. While it protects against infections by extracellular bacteria its role in infection with obligate intracellular bacteria, such as the avian and human pathogen Chlamydia (C.) psittaci, is still unknown. In the present study, knockout mice lacking C3 and thus all main complement effector functions were intranasally infected with C. psittaci strain DC15. Clinical parameters, lung histology, and cytokine levels were determined. A subset of infections was additionally performed with mice lacking C5 or C5a receptors. Complement activation occurred before symptoms of pneumonia appeared. Mice lacking C3 were ∼100 times more susceptible to the intracellular bacteria compared to wild-type mice, with all C3(-/-) mice succumbing to infection after day 9. At a low infective dose, C3(-/-) mice became severely ill after an even longer delay, the kinetics suggesting a so far unknown link of complement to the adaptive, protective immune response against chlamydiae. The lethal phenotype of C3(-/-) mice is not based on differences in the anti-chlamydial IgG response (which is slightly delayed) as demonstrated by serum transfer experiments. In addition, during the first week of infection, the absence of C3 was associated with partial protection characterized by reduced weight loss, better clinical score and lower bacterial burden, which might be explained by a different mechanism. Lack of complement functions downstream of C5 had little effect. This study demonstrates for the first time a strong and complex influence of complement effector functions, downstream of C3 and upstream of C5, on the outcome of an infection with intracellular bacteria, such as C. psittaci.


Assuntos
Chlamydophila psittaci/imunologia , Proteínas do Sistema Complemento/imunologia , Pneumonia/imunologia , Psitacose/imunologia , Animais , Carga Bacteriana , Líquido da Lavagem Broncoalveolar/imunologia , Ativação do Complemento/imunologia , Complemento C3/genética , Complemento C3/imunologia , Complemento C3/metabolismo , Complemento C5/imunologia , Complemento C5/metabolismo , Proteínas do Sistema Complemento/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Granulócitos/imunologia , Granulócitos/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Peroxidase/metabolismo , Pneumonia/genética , Pneumonia/microbiologia , Pneumonia/mortalidade , Psitacose/genética , Psitacose/microbiologia , Psitacose/mortalidade , Receptores de Complemento/genética , Receptores de Complemento/imunologia , Baço/imunologia , Baço/microbiologia
18.
Leukemia ; 26(7): 1647-53, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22382892

RESUMO

Ocular adnexal marginal zone B-cell lymphomas (OAMZLs) arise in the connective tissues of the orbit or in the mucosa-associated lymphoid tissue of the conjunctiva. Here, we present the immunological and genetic analyses of 20 primary Chlamydia psittaci (Cp)-negative OAMZLs. Analysis of the immunoglobulin variable heavy chain (IgV(H)) gene usage demonstrated a significant preference for V(H)4-34. A combined analysis across all previously published OAMZLs confirmed that this is a general feature of OAMZL, in particular of the Cp-negative group. Our series of OAMZLs did not express the characteristic rheumatoid factor V(H)DJ(H) rearrangements that were previously found in salivary gland- and gastric-marginal zone B-cell lymphomas (MZBCLs). We did not detect the MZBCL-specific chromosomal translocations, t(11;18) API2-MALT1 (mucosa-associated lymphoid tissue1) and t(14;18) IgH/MALT1. Two cases contained a premature stop codon in the A20 gene (TNFAIP3) and one case harbored the activating MYD88 hotspot mutation L265P. Variable nuclear expression of BCL10, NFκB1 (p50) and NFκB2 (p52) suggests that other additional genetic abnormalities affecting the NFκB pathway exist within this group of lymphomas. OAMZL showed variable expression of the chemokine receptor CXCR3 and integrin α4ß7 by the tumor B cells, and low interferon-γ and interlukin-4 mRNA levels in the tissue, indicative of an inflammatory environment with features in between those previously found in cutaneous and other extranodal MZBCL. The strongly biased usage of V(H)4-34 in Cp-negative OAMZLs suggests involvement of a particular stimulatory (auto-) antigen in their development.


Assuntos
Rearranjo Gênico de Cadeia Pesada de Linfócito B , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Inflamação/metabolismo , Linfoma de Zona Marginal Tipo Células B/genética , Linfoma de Zona Marginal Tipo Células B/imunologia , Western Blotting , Núcleo Celular/metabolismo , Chlamydophila psittaci/genética , Chlamydophila psittaci/isolamento & purificação , DNA Bacteriano/genética , Humanos , Técnicas Imunoenzimáticas , Inflamação/genética , Inflamação/imunologia , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Linfoma de Zona Marginal Tipo Células B/microbiologia , Mutação/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Prognóstico , Psitacose/genética , Psitacose/imunologia , Psitacose/microbiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Translocação Genética
19.
PLoS One ; 7(3): e33781, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438999

RESUMO

Genetic mapping studies may provide association between sequence variants and disease susceptibility that can, with further experimental and computational analysis, lead to discovery of causal mechanisms and effective intervention. We have previously demonstrated that polymorphisms in immunity-related GTPases (IRG) confer a significant difference in susceptibility to Chlamydia psittaci infection in BXD recombinant mice. Here we combine genetic mapping and network modeling to identify causal pathways underlying this association. We infected a large panel of BXD strains with C. psittaci and assessed host genotype, IRG protein polymorphisms, pathogen load, expression of 32 cytokines, inflammatory cell populations, and weight change. Proinflammatory cytokines correlated with each other and were controlled by a novel genetic locus on chromosome 1, but did not affect disease status, as quantified by weight change 6 days after infection In contrast, weight change correlated strongly with levels of inflammatory cell populations and pathogen load that were controlled by an IRG encoding genetic locus (Ctrq3) on chromosome 11. These data provided content to generate a predictive model of infection using a Bayesian framework incorporating genotypes, immune system parameters, and weight change as a measure of disease severity. Two predictions derived from the model were tested and confirmed in a second round of experiments. First, strains with the susceptible IRG haplotype lost weight as a function of pathogen load whereas strains with the resistant haplotype were almost completely unaffected over a very wide range of pathogen load. Second, we predicted that macrophage activation by Ctrq3 would be central in conferring pathogen tolerance. We demonstrated that macrophage depletion in strains with the resistant haplotype led to neutrophil influx and greater weight loss despite a lower pathogen burden. Our results show that genetic mapping and network modeling can be combined to identify causal pathways underlying chlamydial disease susceptibility.


Assuntos
Interações Hospedeiro-Patógeno/genética , Psitacose/genética , Animais , Teorema de Bayes , Chlamydophila psittaci/imunologia , Chlamydophila psittaci/patogenicidade , Mapeamento Cromossômico , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/imunologia , Redes Reguladoras de Genes , Predisposição Genética para Doença , Haplótipos , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Modelos Genéticos , Neutrófilos/imunologia , Psitacose/imunologia , Psitacose/patologia , Locos de Características Quantitativas , Especificidade da Espécie , Redução de Peso/genética , Redução de Peso/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...